Sensing is life

Die Zukunft des Lichts ist smart

Dr. Martin Strassburg 16/05/2022

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Agenda

- 1. LED Technology: A brief history of light
- 2. LEDs today's challenges
- 3. Smart light for a bright and safe future

Towards autonomous mobility UV-C LEDs for disinfection Horticultural lighting

4. Q & A

Agenda

- **1. LED Technology: A brief history of light**
- 2. LEDs today's challenges
- 3. Smart light for a bright and safe future

Towards autonomous mobility UV-C LEDs for disinfection Horticultural lighting

4. Q & A

What is Light?

Light is defined for human vision

CALL OSRAM

Light - Everything depends on the Sun

Candlelight...

And than came the LED...

CALL OSRAM

White Light-Emitting Diodes Materials and function

1995

Early-stage Research: Ill-nitride semiconductors

- tunable direct bandgap from IR to UV
- well-established p-type doping & processing

Research and Development: GaN and InGaN blue LEDs

high efficiency, high power, high reliability

1980ies

The Nobel Prize in Physics 2014

2014

Photo: A. Mahmoud Isamu Akasaki Prize share: 1/3 Photo: A. Mahmoud Photo: A. Mahmoud Hiroshi Amano Shuji Nakamura Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura "for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources".

taken from nobelprize.org

Research and Development and Innovation: Converted white LEDs

phosphor dyes absorb part of the blue light and convert it to green, yellow and red

phosphor-converted

white LEDs

Agenda

- 1. LED Technology: A brief history of light
- 2. LEDs today's challenges
- 3. Smart light for a bright and safe future

Towards autonomous mobility UV-C LEDs for disinfection Horticultural lighting

4. Q & A

From LEDs to digital solutions

CALL OSRAM

Vision and mission for ams OSRAM

Vision: Create the uncontested leader in optical solutions

Our mission is to create the uncontested leader in optical solutions through bold investments in disruptive innovation and continuous transformation delivering best-in-class profitability and growth.

Upcoming Photonics Technology

Smart and Integrated Photonics

Components, Subsystems and Systems

Emitter

opto-electronics (IR to deep UV), LEDs, laser, VCSEL, chip & design, miniaturization, integration of electronics...

System & Modules

package design and materials, system integration, customer experience...

))

Detector

Photodiodes, arrays, materials, low power

IC know-how Internal driver ICs, ASICs

Algorithms, software

15 Internationaler Tag des Lichts | Wien | 16. Mai 2022 Dr. Martin Strassburg

Agenda

- 1. LED Technology: A brief history of light
- 2. LEDs today's challenges
- 3. Smart light for a bright and safe future

Towards autonomous mobility UV-C LEDs for disinfection Horticultural lighting

4. Q & A

Towards autonomous mobility

Trends and Innovation

New signaling opportunities for ...

Future Efficient Display Technology

Enabling Electrically Autonomously Driven Vehicles

From Signaling to Communication → Increasing Level of Integration is required

Adaptive Driving Beam (ADB) with Higher Resolution: EVIYOS 2.0

Higher resolution enables more precise masking: Smoother beam shaping \rightarrow less driver distraction

One chip serves both:

Illumination Permanent glare-free

Visualization Projection assist

20 Internationaler Tag des Lichts | Wien | 16. Mai 2022 Dr. Martin Strassburg

Adaptive Driving Beam (ADB) with Higher Resolution: EVIYOS 2.0

Higher resolution enables more precise masking: Smoother beam shaping \rightarrow less driver distraction

One chip serves both:

Illumination Permanent glare-free

Visualization Projection assist

21 Internationaler Tag des Lichts | Wien | 16. Mai 2022 Dr. Martin Strassburg

LiDAR for autonomous driving – principle of operation

- Time-of-Flight (ToF) LiDAR
- Together with Camera & Radar
- 3D/4D Signal Processing

- LiDAR module sends out short, powerful pulse of light (like shooting a ball)
- Time until light comes back is stopped, this yields distance

Automotive Sensing Applications IR Technology for higher Safety and Comfort

The Future of Mobility is safer and more enjoyable. ams OSRAM cutting edge IR technologies are enabling new applications for driver and passenger safety and comfort.

Applications

ADAS (Advanced Driver Assistance Systems)

Driver / In-Cabin Monitoring

Gesture Recognition

Light Sensors (ALS, Rain)

Exterior Sensing

CALC OSRAM

UV-C LEDs for disinfection

Disinfection by UV-C Is UV-C radiation an artificial light source and why can it be used for disinfection purposes?

• UV-A	320-400 nm	non germicidal	
■UV-B	280-320 nm	germicidal	actinic
• UV-C	200-280 nm	germicidal	actinic
• VUV	100-200 nm	vacuum ultra violet	actinic

• The range of **200-280 nm** is mainly used for **disinfection** purposes.

Since there is no UV-C radiation from sun on earth ground level, **most organisms had no need to develop any protection**.

Therefore UV-C radiation can be used for disinfection purposes to kill bacteria and to inactivate viruses.

Fighting Corona: UV-C Most effective to kill the virus: 265 nm

UV-C irradiation is highly effective in inactivating and inhibiting SARS-CoV-2 replication

Andrea Bianco, Andrea Biasin, Andrea Biasin, Andrea Biasin, Andrea Bianco, Andrea Bianco, Andrea Biasin, Andrea Biasi

Conventional UV-C mercury lamps

- Emit at 254 nm (Hg-line)
- High system efficiency (33%)
- Mature technology
- Cheap, but bulky
- Contain mercury

UV-C LED to emit at 265 nm

- still difficult as efficiencies are very low due to AlGaN system
- still very high cost vs. Hg-lamps but dropping dramatically
- ams-OSRAM research since more than 5 years
- high irradiance for ultra-compact devices

Application example of UV-C LED and UV Sensor II

Spectral details of the experiment based on the UV-C LED, the UV Sensor

The detection of a contamination requires a UV-C LED sources as well as a UV Sensor to measure the fluorescence of the microorganisms.

CALL OSRAM

UV-C LEDs applications

Disinfection market is split by field of applications and requirement segmentation

28 Internationaler Tag des Lichts | Wien | 16. Mai 2022 Dr. Martin Strassburg

Horticultural lighting

State and

And the second

المتحد المراجع المتعاد المتعاد المراجع المتعاد المراجع المراجع

Horticulture is a rapidly growing application

Artificial Light in Greenhouses Globally

Total area of Greenhouses: ~ 4.750 km²

Urbanization & Growing Need

- Growing population requires efficient plant growth
- Higher focus on local food production leads to new concepts
- Lack of water strengthen vertical farming concepts
- Food safety and reduction of pesticide and herbicide usage

Advanced Horticulture Lighting

Sensing and LED Lighting

- Control of angle and intensity of light
- Detection of disease is more optimized with digital image processing vs. manual inspection

 Species of crop and stage of plant growth determine the spectrum

Greenhouse and Indoor & Vertical Farming

Requirements and Technology

Greenhouse

Top lighting & interlighting to complement sunlight

Traditional HPS still used in tandem with LEDs (Hybrid solution)

Total photon flux

Vertical & Indoor farming

Need lighting fixture to replace sunlight

Full control based on tunable systems with sole source of light

Spectrum and Total photon flux

CALL OSRAM

Reduction of Ecological Footprint

Environmental and Economic Sustainability

Resource Efficiency

- Increase in crop productivity per unit liter of water
- Less energy consumption for crop production
- Saving of growing area and growing volume per kg crop production
- Reduction in transportation km

Food Safety

- Improved control of plant diseases
- Increase of wanted content of nutrition and ingredients
- Granting local and regional access to fresh food

Sensing is life Intelligence to light, passion to innovation

Mobile, Wearable, Computing

Industrial, Medical

Automotive

Lighting

CALL OSRAM

Sensing is life

CALL OSRAM

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Federal Ministry of Education and Research

Thank you...

...and I am happy to answer your questions!